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Descriptive complexity theory is the study of the logical characterizations of computational
complexity classes, which offers us a unique perspective on complexity theory. While finding the
logic that captures P, or PTIME logic, remains a primary objective in this theory, our research
focuses on the limited nondeterminism classes, especially the class SP. The limited nondeterminism
classes refer to a specific category of computational complexity classes where the amount of non-
determinism is restricted or constrained in some way. For the class P, it consists of the problems
whose computation’s amount of nondeterminism is limited by a poly-logarithmic function w.r.t.
the length of the input while whose running time is polynomial [8]. AP is often discussed for it
lies between P and NP. As Fagin’s theorem has linked the second-order quantification with the
nondeterminism in computation [4], it is natural for us to consider adding some poly-logarithmic
functions as restrictions on the second-order quantifiers. Let’s call them log-quantifiers. The syn-
tax and semantics of log-quantifiers first occurred in the publication of Ferrarotti et al [5]. While
nearly at the same time, we independently introduced the log-quantifiers in our own paper [10].

Thus in our study, we accomplish three key objectives:

1. Using log-quantifiers, we define a series of new logics, SOP'°6-£, which we also call log-

quantifier logics.

2. We show that the existential fragments capture the corresponding Guess-then-Check com-

plexity classes on ordered structures, where especially, erlog-IFP captures SP.

3. We study the expressive power of log-quantifiers, with the help of the classical methods:

game method and 0-1 laws.

1 The log-quantifiers

Let £ be a logic. Denote by SOP'8-£ the minimal set that consists of
1. all the formulas of L;

2. the formulas in the form Eilogng/} or Vlogsz/}, for any k£ € N, and relation variable X, if ¢

is in the set.

Let SP°2.£ (resp. IIP'°2-£) be the set of formulas in the form 398" X, .. 398" X, 1 (resp.
viog" x| Ioe"™ X ), where o) is a L-formula. We recursively define SR8 £ = mPloe(TIplos. L)
and TI2%-£ = TIY'°%(SPl8_£). Let A be an arbitrary structure. The satisfaction relation of
SOP!°%_ inherits that of £, and

A 38" Yy = 3R € A*) such that |R| < log*(|4]) and A = ¢[R).



There are important four parameters. Let sqr(¢) (resp. fqr(¢)) be the second-order (resp.
first-order) quantifier rank of ¢. Let mva(¢) = max{ar(X) | X is a bound variable ¢}, which is
the mazximal variable arity of ¢. And let height(¢) = max{k | Jog® or Wo8" oecurs in ¢}, which
we call the height of ¢. For any n, k, let L°8"-£ = {¢ € LP5_£ | height(¢) < k} and “II8"-£”
and “SO'°%"_£” are defined analogously.

Proposition 1.1. For any logic £ > FO and natural numbers n, k > 1. Every formula ¢ of Elfgk—ﬁ
(resp. Hfgk—ﬁ) is equivalent to a formula ¢’ of EIT?gk—ﬁ (resp. Hi?gk—ﬁ) such that mva(¢’) < 2.

Note that for the classical second-order logic, it is an open problem whether every :1-formula is
equivalent to a X}-formula all of whose relation variables are at most binary [6].

2 Logical characterizations of the Guess-then-Check classes

Definition 2.1. [1] Let g : N+— N be a function and C a complexity class. A language L is in the
class GC(g,C) if there is a language L' € C with an integer ¢ > 0 such that for any X,

XeL«3Ye{0,1}590%) and x#y e L,
where {0, 1}=¢90%D is the set of 01 strings of length at most c- g(|X]).

By the classical results in descriptive complexity theory[7], it is easy to see that

Theorem 2.2. Let £ € {FOB,DTC, TC,IFP}. On ordered structures, if £ captures a complexity
k
class C, then $°8 -£ captures GC(log" !, C).

Because for k € N, define 5 = GC’(logk,P) and P = Ukzl Bk [2], we have

Corollary 2.3. On ordered structures, Ellogk—IFP captures Sry1 and Elflog—IFP captures 8P.

Similar to the case of IFP, we have proved earlier in [10] that EVEN is not definable in SOP°&-IFP.
Hence, EVEN is not definable in any logic weaker than SOP°&-IFP.

3 The expressive power of log-quantifiers

A logic satisfies the 0-1 law if for every formula of the logic, its asymptotic probability is either 0 or
1. FO satisfies the 0-1 law while MSO does not [3]. By a similar argument, we have the following

proposition.

Proposition 3.1. Thereis a leogQ—FO formula that defines an order on almost all finite structures

containing a binary relation.
By the fact that DTC defines EVEN on ordered structures, we have
Corollary 3.2. Ellogz—DTC and Hllogz—DTC do not satisfy the 0-1 laws.

It is well known that the languages definable in the monadic second-order logic, MSO, are
exactly the regular languages. As these logics share the idea of restricting the second-order variable,
what are their differences? Let AT is the set all the nonempty strings over a vocabulary A and
A* = AT U {e}. Define an equivalence relation =, ,; on A*: for any U,V € AT | we write
U =k V, if for any SOP'°e_FO-sentence ¢ with sqr(¢) < m, mva(¢) < r, height(¢) < k, and
far(o) <1,

UE =V Eo



Lemma 3.3. For any natural numbers m > 0, v, k,I > 1, there exists N € N such that for any
strings X', Z € A* and ) € A" and any natural number hi, hy > N, if

log(|X] + hy - [V +[2]) = log(|X] + ha - (V] + | Z]),

then
XYMZ =, . X2

The lemma is proved by a designed game for SOP°6-FO. It shows that SOP'*.-FO cannot
distinguish two strings with similar patterns and lengths. With this lemma, we can easily find
some problems that separate MSO and SOP'°6-FO. So we have:

Proposition 3.4. On strings, MSO £ SOP°6-FO and monadic Ellog—FO % MSO.

Monadic Ellog—FO is a very weak fragment. Therefore SOP°8-FO ¢ MSO. Last but not least, by

the “periodicity” of regular languages [3, 9], we also show that:

Theorem 3.5. If a language L is definable both in SOP'°5-FO and MSO, the L is definable in FO.
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