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Descriptive complexity theory is the study of the logical characterizations of computational
complexity classes, which offers us a unique perspective on complexity theory. While finding the
logic that captures P, or PTIME logic, remains a primary objective in this theory, our research
focuses on the limited nondeterminism classes, especially the class βP. The limited nondeterminism
classes refer to a specific category of computational complexity classes where the amount of non-
determinism is restricted or constrained in some way. For the class βP, it consists of the problems
whose computation’s amount of nondeterminism is limited by a poly-logarithmic function w.r.t.
the length of the input while whose running time is polynomial [8]. βP is often discussed for it
lies between P and NP. As Fagin’s theorem has linked the second-order quantification with the
nondeterminism in computation [4], it is natural for us to consider adding some poly-logarithmic
functions as restrictions on the second-order quantifiers. Let’s call them log-quantifiers. The syn-
tax and semantics of log-quantifiers first occurred in the publication of Ferrarotti et al [5]. While
nearly at the same time, we independently introduced the log-quantifiers in our own paper [10].
Thus in our study, we accomplish three key objectives:

1. Using log-quantifiers, we define a series of new logics, SOplog-L, which we also call log-
quantifier logics.

2. We show that the existential fragments capture the corresponding Guess-then-Check com-
plexity classes on ordered structures, where especially, Σplog

1 -IFP captures βP.

3. We study the expressive power of log-quantifiers, with the help of the classical methods:
game method and 0-1 laws.

1 The log-quantifiers
Let L be a logic. Denote by SOplog-L the minimal set that consists of

1. all the formulas of L;

2. the formulas in the form ∃logk

Xψ or ∀logk

Xψ, for any k ∈ N+ and relation variable X, if ψ
is in the set.

Let Σplog
1 -L (resp. Πplog

1 -L) be the set of formulas in the form ∃logk1
X1 . . . ∃log

km
Xmψ (resp.

∀logk1
X1 . . . ∀log

km
Xmψ), where ψ is a L-formula. We recursively define Σplog

n+1-L = Σplog
1 -(Πplog

n -L)
and Πplog

n+1-L = Πplog
1 -(Σplog

n -L). Let A be an arbitrary structure. The satisfaction relation of
SOplog-L inherits that of L, and

A |= ∃log
k

Y ψ ⇐⇒ ∃R ⊆ Aar(Y ) such that |R| ≤ logk(|A|) and A |= ψ[R].
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There are important four parameters. Let sqr(ϕ) (resp. fqr(ϕ)) be the second-order (resp.
first-order) quantifier rank of ϕ. Let mva(ϕ) = max{ar(X) | X is a bound variable ϕ}, which is
the maximal variable arity of ϕ. And let height(ϕ) = max{k | ∃logk or ∀logk occurs in ϕ}, which
we call the height of ϕ. For any n, k, let Σlogk

n -L = {ϕ ∈ Σplog
n -L | height(ϕ) ≤ k} and “Πlogk

n -L”
and “SOlogk

-L” are defined analogously.

Proposition 1.1. For any logic L ≥ FO and natural numbers n, k ≥ 1. Every formula ϕ of Σlogk

n -L
(resp. Πlogk

n -L) is equivalent to a formula ϕ′ of Σlogk

n -L (resp. Πlogk

n -L) such that mva(ϕ′) ≤ 2.

Note that for the classical second-order logic, it is an open problem whether every Σ1
1-formula is

equivalent to a Σ1
1-formula all of whose relation variables are at most binary [6].

2 Logical characterizations of the Guess-then-Check classes
Definition 2.1. [1] Let g : N 7→ N be a function and C a complexity class. A language L is in the
class GC(g, C) if there is a language L′ ∈ C with an integer c > 0 such that for any X ,

X ∈ L⇐⇒ ∃Y ∈ {0, 1}≤c·g(|X |) and X#Y ∈ L′,

where {0, 1}≤c·g(|X |) is the set of 01 strings of length at most c· g(|X |).

By the classical results in descriptive complexity theory[7], it is easy to see that

Theorem 2.2. Let L ∈ {FOB,DTC,TC, IFP}. On ordered structures, if L captures a complexity
class C, then Σlogk

1 -L captures GC(logk+1, C).

Because for k ∈ N, define βk = GC(logk,P) and βP =
∪

k≥1 βk [2], we have

Corollary 2.3. On ordered structures, Σlogk

1 -IFP captures βk+1 and Σplog
1 -IFP captures βP.

Similar to the case of IFP, we have proved earlier in [10] that EVEN is not definable in SOplog-IFP.
Hence, EVEN is not definable in any logic weaker than SOplog-IFP.

3 The expressive power of log-quantifiers
A logic satisfies the 0-1 law if for every formula of the logic, its asymptotic probability is either 0 or
1. FO satisfies the 0-1 law while MSO does not [3]. By a similar argument, we have the following
proposition.

Proposition 3.1. There is a Σlog2

1 -FO formula that defines an order on almost all finite structures
containing a binary relation.

By the fact that DTC defines EVEN on ordered structures, we have

Corollary 3.2. Σlog2

1 -DTC and Πlog2

1 -DTC do not satisfy the 0-1 laws.

It is well known that the languages definable in the monadic second-order logic, MSO, are
exactly the regular languages. As these logics share the idea of restricting the second-order variable,
what are their differences? Let A+ is the set all the nonempty strings over a vocabulary A and
A∗ = A+ ∪ {ϵ}. Define an equivalence relation ≡m,r,k,l on A+: for any U ,V ∈ A+ , we write
U ≡m,r,k,l V, if for any SOplog-FO-sentence ϕ with sqr(ϕ) ≤ m, mva(ϕ) ≤ r, height(ϕ) ≤ k, and
fqr(ϕ) ≤ l,

U |= ϕ⇐⇒ V |= ϕ.
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Lemma 3.3. For any natural numbers m ≥ 0, r, k, l ≥ 1, there exists N ∈ N such that for any
strings X ,Z ∈ A∗ and Y ∈ A+ and any natural number h1, h2 > N , if

log(|X |+ h1 · |Y|+ |Z|) = log(|X |+ h2 · |Y|+ |Z|),

then
XYh1Z ≡m,r,k,l XYh2Z.

The lemma is proved by a designed game for SOplog-FO. It shows that SOplog-FO cannot
distinguish two strings with similar patterns and lengths. With this lemma, we can easily find
some problems that separate MSO and SOplog-FO. So we have:

Proposition 3.4. On strings, MSO 6≤ SOplog-FO and monadic Σlog
1 -FO 6≤ MSO.

Monadic Σlog
1 -FO is a very weak fragment. Therefore SOplog-FO 6≤ MSO. Last but not least, by

the “periodicity” of regular languages [3, 9], we also show that:

Theorem 3.5. If a language L is definable both in SOplog-FO and MSO, the L is definable in FO.
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