
Indistinguishability games for Extensions of PDL with
Intersection and Converse
DIEGO FIGUEIRA, Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

SANTIAGO FIGUEIRA, Univ. Buenos Aires, FCEN, DC & CONICET-UBA, ICC, Argentina

EDWIN PIN, Univ. Buenos Aires, FCEN, DM & CONICET-UBA, ICC, Argentina

We introduce a new kind of pebble games, which capture logical indistinguishability for programs

and formulas of CPDL
+
, a family of expressive logics rooted in Propositional Dynamic Logic (PDL).

In terms of expressive power, CPDL
+
strictly contains PDL extended with intersection and converse

(a.k.a. ICPDL) as well as Conjunctive Queries (CQ), Conjunctive Regular Path Queries (CRPQ), or

some known extensions thereof (Regular Queries and CQPDL). The games introduced here are

closely related to the “existential 𝑘-pebble game” [2, 3] on first-order structures with binary and

unary signatures, but in our setting we add an additional rule stating that a pebble cannot be placed

too far away from another pebble. This allows us to separate natural fragments of CPDL
+
that can

be defined in terms of the tree-width of the underlying graphs of the expressions.

This extended abstract is based on the paper PDL on Steroids: on Expressive Extensions of PDL
with Intersection and Converse, accepted at LICS’23.

AN EXTENSION OF CPDL
CPDL. The logic PDL was originally conceived for reasoning about programs [1]. However,

variants of PDL are nowadays used in various areas of computer science, in particular in description

logics, epistemic logics, program verification, or for querying datasets. CPDL expresses properties

on (worlds and pairs of worlds of) Kripke structures, which are tuples of the form 𝐾 = (𝑋, {→𝑎 | 𝑎 ∈
A}, {𝑋𝑝 | 𝑝 ∈ P}) where 𝑋 is a set of “worlds”, →𝑎 ⊆ 𝑋 × 𝑋 is a transition relation for each 𝑎 ∈ A,
and 𝑋𝑝 ⊆ 𝑋 is a unary relation for each 𝑝 ∈ P. For 𝐾 as above, we denote 𝑋 by𝑊(𝐾). Expressions of
CPDL can be either formulas 𝜑 or programs 𝜋 , defined by the following grammar, where 𝑝 ranges

over P and 𝑎 over A:

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨𝜋⟩
𝜋 ::= 𝜀 | 𝑎 | 𝑎 | 𝜋 ∪ 𝜋 | 𝜋 ◦ 𝜋 | 𝜋∗ | 𝜑?

The semantics are given for programs ⟦𝜋⟧𝐾 and for formulas ⟦𝜑⟧𝐾 in a Kripke structure 𝐾 , where

⟦𝜋⟧𝐾 ⊆ 𝑋 ×𝑋 and ⟦𝜑⟧𝐾 ⊆ 𝑋 . The formal definition is not given here, but as usual, ⟦𝜋⟧𝐾 represents

the set of pairs of worlds of 𝐾 where 𝜋 holds, and ⟦𝜑⟧𝐾 represents the set worlds of 𝐾 where 𝜑

holds. We write 𝐾,𝑢 |= 𝜑 for 𝑢 ∈ ⟦𝜑⟧𝐾 and 𝐾,𝑢, 𝑣 |= 𝜋 for (𝑢, 𝑣) ∈ ⟦𝜋⟧𝐾 and we write 𝜑1 ≡ 𝜑2

(resp. 𝜋1 ≡ 𝜋2) if ⟦𝜑1⟧𝐾 = ⟦𝜑2⟧𝐾 (resp. ⟦𝜋1⟧𝐾 = ⟦𝜋2⟧𝐾) for every structure 𝐾 , in which case we

say that 𝜑1, 𝜑2 (resp. 𝜋1, 𝜋2) are equivalent.

CPDL
+. An “atom” is an expression of the form 𝜋 (𝑥, 𝑥 ′), where 𝜋 is a CPDL

+
program and

𝑥, 𝑥 ′ ∈ V. For an atom 𝜋 (𝑥, 𝑥 ′) we define vars(𝜋 (𝑥, 𝑥 ′)) := {𝑥, 𝑥 ′}, and for a set of atoms 𝐶 we

define vars(𝐶) :=
⋃
𝐴∈𝐶 vars(𝐴). We define CPDL

+
as an extension of CPDL allowing also programs

of the form

𝜋 ::= 𝐶 [𝑥𝑠 , 𝑥𝑡]
where: (1) 𝐶 is a finite set of atoms; (2) 𝑥𝑠 , 𝑥𝑡 ∈ vars(𝐶)1; and (3) the underlying graph G𝐶 of 𝐶

is connected, where G𝐶 has vars(𝐶) as vertices and {vars(𝐴) | 𝐴 ∈ 𝐶} as edges. We call these

1
Note that 𝑥𝑠 and 𝑥𝑡 may be equal or distinct variables.

2 Figueira, Figueira, and Pin

programs conjunctive programs. We say that an expression of CPDL
+
is positive if it does not

contain any subformula of the form ¬𝜓 . Observe that {𝑥𝑠 , 𝑥𝑡 } ⊆ vars(𝐶), and hence we also define

vars(𝐶 [𝑥𝑠 , 𝑥𝑡]) := vars(𝐶).
A function 𝑓 : vars(𝐶) →𝑊(𝐾), is a 𝐶-satisfying assignment if (𝑓 (𝑥), 𝑓 (𝑥 ′)) ∈ ⟦𝜋 ′⟧𝐾 for every

atom 𝜋 ′ (𝑥, 𝑥 ′) ∈ 𝐶 . The semantics ⟦𝐶 [𝑥𝑠 , 𝑥𝑡]⟧𝐾 of a conjunctive program on a Kripke structure

𝐾 is the set of all pairs (𝑤𝑠 ,𝑤𝑡) ∈ 𝑊(𝐾) ×𝑊(𝐾) such that 𝑓 (𝑥𝑠) = 𝑤𝑠 and 𝑓 (𝑥𝑡) = 𝑤𝑡 for some

𝐶-satisfying assignment 𝑓 .

For any conjunctive program 𝜋 = 𝐶 [𝑥𝑠 , 𝑥𝑡] we consider the underlying graphG𝐶 [𝑥𝑠 ,𝑥𝑡] of𝐶 [𝑥𝑠 , 𝑥𝑡]
as the graph having vars(𝐶) as vertices and {{𝑥𝑠 , 𝑥𝑡 }} ∪ 𝐸 (G𝐶) as edges. Observe that 𝑥𝑠 and 𝑥𝑡
are always connected via an edge in G𝐶 [𝑥𝑠 ,𝑥𝑡] but not necessarily in G𝐶 . We define CPDL

+(TW𝑘) as
the fragment of CPDL

+
whose only allowed conjunctive programs are of the form 𝐶 [𝑥𝑠 , 𝑥𝑡] where

G𝐶 [𝑥𝑠 ,𝑥𝑡] has tree-width at most 𝑘 .

INDISTINGUISHABILITY GAMES
In what follows we use the standard notation 𝑢 to denote a tuple of elements from some set 𝑋 and

𝑢 [𝑖] to denote the element in its 𝑖-th component. If 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a tuple and 1 ≤ 𝑖 ≤ 𝑘 , by

𝑞 [𝑖 ↦→𝑟] we denote the tuple (𝑞1, . . . , 𝑞𝑖−1, 𝑟 , 𝑞𝑖+1, . . . , 𝑞𝑘).
We will define the notion of 𝑘-simulation between pairs (𝐾,𝐾 ′) of Kripke structures via a two-

player zero-sum graph game G[⇀𝑘]. The arena of the game has a set of positions 𝑆 ∪ 𝐷 , where
𝑆 = {𝑠} ×Hom𝑘 (𝐾,𝐾 ′) and 𝐷 = {𝑑1, . . . , 𝑑𝑘 } × (𝑊(𝐾)𝑘 ×𝑊(𝐾 ′)𝑘) where Spoiler owns all positions
from 𝑆 and Duplicator all positions from 𝐷 . The set of moves of G[⇀𝑘] is the smallest set satisfying

the following:
2

(1) There is a move from (𝑠,𝑢, 𝑣) to (𝑑𝑖 , 𝑢′, 𝑣) if 𝑢′ = 𝑢 [𝑖 ↦→𝑤], where 𝑤 is a world from 𝐾 at

distance ≤ 1 from 𝑢 [𝑗], for some 1 ≤ 𝑗 ≤ 𝑘 with 𝑖 ≠ 𝑗 ; and

(2) There is a move from (𝑑𝑖 , 𝑢′, 𝑣) to (𝑠,𝑢′, 𝑣 ′) if 𝑣 ′ = 𝑣 [𝑖 ↦→𝑤], where𝑤 is a world from 𝐾 ′
at

distance ≤ 1 from 𝑣 [𝑗], for some 1 ≤ 𝑗 ≤ 𝑘 with 𝑖 ≠ 𝑗 .

The winning condition for Duplicator is just any infinite play, which is a form of “Safety condition”,

which implies (positional) determinacy of the game. The ‘pebbles’ of each player are represented

by 𝑢 and 𝑣 in the above definition and the rules of move say that each player can move a pebble

provided that the following invariant is preserved: all pebbles are placed in the same connected

component of each model.

Given two Kripke structures 𝐾,𝐾 ′
, and tuples 𝑣 ∈𝑊 (𝐾)𝑘 and 𝑣 ′ ∈𝑊 (𝐾 ′)𝑘 , we say that 𝐾 ′, 𝑣 ′

𝑘-simulates 𝐾, 𝑣 , notated 𝐾, 𝑣 ⇀𝑘 𝐾
′, 𝑣 ′, if 1) (𝑠, 𝑣, 𝑣 ′) is a valid position of G[⇀𝑘] on (𝐾,𝐾 ′) (i.e.,

𝑣, 𝑣 ′ induce a partial homomorphism), 2) all the worlds in 𝑣 are in the same connected component

of 𝐾 , and 3) Duplicator has a winning strategy from (𝑠, 𝑣, 𝑣 ′).

Theorem 1. Let 𝑘 ≥ 2. Given Kripke structures 𝐾,𝐾 ′ where 𝐾 ′ is of finite degree and worlds
𝑢, 𝑣 ∈𝑊(𝐾) and 𝑢′, 𝑣 ′ ∈𝑊(𝐾 ′), the following are equivalent

(1) for every positive CPDL+(TW𝑘)-formula 𝜑 , we have 𝐾, 𝑣 |= 𝜑 implies 𝐾 ′, 𝑣 ′ |= 𝜑 ; and
(2) 𝐾, 𝑣 ⇀𝑘+1 𝐾

′, 𝑣 ′;

and the following are equivalent

(1) for every positive CPDL+(TW𝑘)-program 𝜋 , we have 𝐾,𝑢, 𝑣 |= 𝜋 implies 𝐾 ′, 𝑢′, 𝑣 ′ |= 𝜋 ; and
(2) 𝐾,𝑢, 𝑣 ⇀𝑘+1 𝐾

′, 𝑢′, 𝑣 ′.

Furthermore, the hypothesis of finite degree is only needed for the 1-to-2 implications.

2
For ease of notation we write (𝑠,𝑢, 𝑣) instead of (𝑠, (𝑢, 𝑣)) and the same for (𝑑𝑖 ,𝑢, 𝑣) .

Indistinguishability games for extensions of PDL 3

The notion of 𝑘-bisimulation on (𝐾,𝐾 ′) is defined as before, using a two-player game G[⇌𝑘].
The new rule (not formally given in this abstract) allows players to swap structures whenever

Spoiler decides so, provided all pebbles in Spoiler’s side are placed over the same world (and hence

all pebbles in Duplicator’s side are also placed over the same world). This accounts for the inclusion

of negation of CPDL
+
-formulas –observe that there is no negation of programs in CPDL

+
.

We say that there is a 𝑘-bisimulation between 𝐾, 𝑣 and 𝐾 ′, 𝑣 ′, and we note it 𝐾, 𝑣 ⇌𝑘 𝐾
′, 𝑣 ′ if 1)

(𝑠, 𝑣, 𝑣 ′) is a valid position of G[⇌𝑘] on (𝐾,𝐾 ′) (i.e., they induce partial homomorphisms), 2) all the

worlds in 𝑣 are in the same connected component of 𝐾 and 3) Duplicator has a winning strategy

from (𝑠, 𝑣, 𝑣 ′) and also from (𝑠, 𝑣 ′, 𝑣).
Theorem 2. Let 𝑘 ≥ 2. Given Kripke structures 𝐾,𝐾 ′ of finite degree and worlds 𝑢, 𝑣 ∈𝑊(𝐾) and

𝑢′, 𝑣 ′ ∈𝑊(𝐾 ′), the following are equivalent
(1) for every CPDL

+(TW𝑘) formula 𝜑 , we have 𝐾, 𝑣 |= 𝜑 iff 𝐾 ′, 𝑣 ′ |= 𝜑 ; and
(2) 𝐾, 𝑣 ⇌𝑘+1 𝐾

′, 𝑣 ′;
and the following are equivalent

(1) for every CPDL
+(TW𝑘) program 𝜋 , we have 𝐾,𝑢, 𝑣 |= 𝜋 iff 𝐾 ′, 𝑢′, 𝑣 ′ |= 𝜋 ; and

(2) 𝐾,𝑢, 𝑣 ⇌𝑘+1 𝐾
′, 𝑢′, 𝑣 ′.

Furthermore, the hypothesis of finite degree is only needed for the 1-to-2 implications.

There are two ways of defining a bisimulation⇌ for the full logic CPDL
+
. One is simply to

define it as the intersection of⇌𝑘 for all 𝑘 , but in terms of a single game, we can also define⇌
analogously to⇌𝑘 but changing the rules of the game as follows: the number of pebbles is not

fixed in advance; instead, Spoiler can add a new pebble in his turn, and Duplicator should answer

with a similar move. Spoiler may choose to switch models provided all pebbles except one are

removed, and so are the companion pebbles on the other side; in this case, the game restarts with

one pebble in each structure with Spoiler and Duplicator having swapped structures.

APPLICATIONS
We showed that ICPDL, the extension of CPDL with ‘intersection’ (namely, adding 𝜋 ::= 𝜋 ∩ 𝜋
with the obvious semantics) is equiexpressive to CPDL

+(TW1) and also to CPDL
+(TW2). Therefore

we have defined a notion of (bi)similarity for ICPDL, which, to the best of our knowledge, was

unknown.

As another application, we show the following result, which states a “tree-like model property”:

Proposition 1. For every 𝑘 ≥ 2, Kripke structure 𝐾 , and world 𝑢 ∈𝑊(𝐾), there exists a Kripke
structure �̂� of tree-width ≤ 𝑘 − 1 and world 𝑢 ∈ 𝑊(�̂�) such that 𝐾,𝑢 ⇌𝑘 �̂�,𝑢. Further, if 𝐾 is
countable, �̂� has a countable tree decomposition of width ≤ 𝑘 − 1.

As a consequence of the above result, we obtain

Theorem 3. For every 𝑘 ≥ 2, CPDL+(TW𝑘+1) is strictly more expressive than CPDL
+(TW𝑘).

Essentially we show that the presence of a (𝑘 + 1)-clique can be expressed in CPDL
+(TW𝑘) but

not in CPDL
+(TW𝑘−1), for every 𝑘 ≥ 3.

REFERENCES
[1] Michael J. Fischer and Richard E. Ladner. 1979. Propositional Dynamic Logic of Regular Programs. Journal of Computer

and System Sciences (JCSS) 18, 2 (1979), 194–211. https://doi.org/10.1016/0022-0000(79)90046-1

[2] Phokion G. Kolaitis and Moshe Y. Vardi. 1995. On the Expressive Power of Datalog: Tools and a Case Study. Journal of
Computer and System Sciences (JCSS) 51, 1 (1995), 110–134. https://doi.org/10.1006/jcss.1995.1055

[3] Phokion G. Kolaitis and Moshe Y. Vardi. 2000. Conjunctive-Query Containment and Constraint Satisfaction. Journal of
Computer and System Sciences (JCSS) 61, 2 (2000), 302–332. https://doi.org/10.1006/jcss.2000.1713

https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1006/jcss.1995.1055
https://doi.org/10.1006/jcss.2000.1713

	References

