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1 Introduction

The k, n-bijection game was introduced by Hella [6] to characterize equivalence in the logic Lk
∞ω(Qn),

which is the extension of the infinitary logic with k variables by means of all n-ary Lindström quanti-
fiers. Recall that a Lindström quantifier Q is specified by some isomorphism-closed class of relational
structures over a fixed vocabulary σ. The quantifier is n-ary if all relations are of arity n or less. In
particular, the k, 1-bijection game, often called the k-pebble bijection game, characterizes equivalence
in Lk

∞ω(Q1) which has the same expressive power as Ck
∞ω, the k-variable infinitary logic with count-

ing. Hella uses the k, n-bijection game to show that, for each n, there is an (n + 1)-ary quantifier
that is not definable in Lk

∞ω(Qn) for any k.
The k, 1-bijection game has been extensively used to establish inexpressibility results for Ck

∞ω.
The k, n-bijection game for n > 1 has received relatively less attention. One reason is that while
equivalence in Ck

∞ω is a polynomial-time decidable relation, which is in fact a relation much studied
on graphs in the form of the Weisfeiler-Leman algorithm, the relation induced by the k, n-bijection
game for n > 1 reduces to isomorphism on graphs and is intractable in general. Nonetheless, there is
some interest in studying, for example, the non-trivial equivalence induced by Lk

∞ω(Q2) on structures
with a ternary relation. Grochow and Levet [5] investigate this relation on finite groups.

A second reason why the logics Lω
∞ω(Qn) have attracted less interest is that in finite model theory

we are often interested in logics that are closed under first-order interpretations. This is especially so
in Descriptive Complexity as the complexity classes we are trying to characterise usually have these
closure properties. While Lω

∞ω(Q1) is closed under first-order interpretations, this is not the case for
Lω
∞ω(Qn) for n > 1. Indeed, the closure of Lω

∞ω(Q2) under interpretations already includes Qn for
all n and so can express all properties of finite structures.

One way of getting meaningful logics that include quantifiers of unbounded arity is to consider
quantifiers which are invariant under stronger relations than isomorphism. As an example, the
class of linear-algebraic quantifiers, introduced in [3], is characterized by the invertible map games
introduced in [4]. These games are used in a highly sophisticated way by Lichter [8] to demonstrate a
polynomial-time property that is not definable in fixed-point logic with rank. The result is extended
to the infinitary logic with all linear-algebraic quantifiers in [2].

Another example is the recent result of Hella [7] showing a hierarchy result for CSP quantifiers,
using a novel game. Recall that for a fixed relational structure B, CSP(B) denotes the class of
structures that map homomorphically to B. Hella establishes that, for each n > 1, there is a
structure B with n + 1 elements that is not definable in Lω

∞ω(Q1,CSPn), where CSPn denote the
collection of all quantifiers of the form CSP(B′) where B′ has at most n elements. Note that CSPn

includes quantifiers of all arities.
The interest in CSP quantifiers is inspired by the great progress that has been made in classifying

constraint satisfaction problems in recent years, resulting in the dichotomy theorem of Bulatov and
Zhuk [1, 9]. The so-called algebraic approach to the classification of CSP has shown that the com-
plexity of CSP(B) is completely determined by the polymorphisms of the structure B, which in turn
determine certain closure properties for the class of structures CSP(B).
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Motivated by this, we introduce certain closure properties of classes of structures, which we call
partial polymorphisms. These closure properties generalize the closure conditions obtained on CSP(B)
from the polymorphisms of B. We show how these closure conditions naturally give rise to a two-
player game. More specifically, for each invariant family P of partial polymorphisms, there is a
k-pebble game played on pairs of structures (A,B) such that a Duplicator winning strategy in this
game guarantees that A and B cannot be distinguished in Lk

∞ω(QP) where QP is the collection of
all quantifiers that are closed under the family P.

We use this game, and a construction in the style of Cai, Fürer and Immerman, to give a class
of structures that is not definable in Lk

∞ω(QN`
) where N` is the collection of near-unanimity partial

polymorhisms of arity `. We illustrate how the class of quantifiers QN`
is considerably more general

than the class of CSP which have a near-unanimity polymorphism
In the rest of this abstract, we give the fundamental definitions of closure under partial polymor-

phisms and of the corresponding pebble game.

2 Partial Polymorphisms

Let t and t′ be constant terms (possibly) containing partial functions. Then the identity t ' t′ means
that either both t and t′ are undefined, or they are both defined and their value is the same.

Definition 1 Let A 6= ∅ be a set, and let p be a be a partial function An → A.
(a) If ~ai = (a1

i , . . . , a
r
i ) ∈ Ar for each i ∈ [n] and p(~aj) is defined for each j ∈ [r], where ~aj :=

(aj1, . . . , a
j
n), then applying p column wise, we obtain the new tuple p̂(~a1, . . . ,~an) := (p(~a1), . . . , p(~ar)).

(b) If R ⊆ Ar, then applying p column wise to it we obtain the relation p̂(R) := {p̂(~a1, . . . ,~an) |
~a1, . . . ,~an ∈ R}.

(c) If A = (A,RA
1 , . . . , R

A
m) is a structure, we denote the structure (A, p̂(RA

1 ), . . . , p̂(RA
m)) by p̂(A).

Definition 2 Suppose pA is a partial function An → A for each finite (nonempty) set A ⊆ ω. We
say that the family {pA | A ∈ Pfin(ω)} is invariant if it respects bijections: if f : A→ B is a bijection
and a1, . . . , an ∈ A, then pB(f(a1), . . . , f(an)) ' f(pA(a1, . . . , an)).

Note that if the family {pA | A ∈ Pfin(ω)} is invariant and |A| > |{a1, . . . , an}| + 1, then
pA(a1, . . . , an) is either undefined, or ai for some i ∈ [n]. Moreover, the subscript i (or being unde-
fined) is completely determined by the equality type of the tuple (a1, . . . , an). Another way of stating
this is that the family is invariant if it can be defined (as a relation) in the language of equality.

Definition 3 For τ -structures A and B, we write A ≤ B if A = B and RA ⊆ RB for each R ∈ τ .

Definition 4 Let P be an invariant family of n-ary partial functions, and let QK be a generalized
quantifier. We say that QK is P-closed if the following holds for all A and B:

if B ∈ K and A ≤ p̂A(B), then A ∈ K.

We denote the class of P-closed quantifiers by QP.

Example 5 Let N` be the family of partial functions nA : A` → A s.t. nA(~a) = a whenever ai 6= a for
at most one i ∈ [`], and nA(~a) is undefined otherwise. The hypergraph coloring quantifiers QCSP(Hn,m)

are N3-closed, where Hn,m is the complete hypergraph of size n and edges of size m.

3 Pebble Games

Let P be an invariant family of partial polymorphisms. Given two structures A and B of the same
vocabulary, and assignments α and β on A and B, respectively, such that dom(α) = dom(β) ⊆ Xk,
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where Xk = {x1, . . . , xk}. we write (A, α) ≡k
∞ω,P (B, β) if (A, α) and (B, β) satisfy the same

Lk
∞ω(QP)-formulas. If α = β = ∅, we write simply A ≡k

∞ω,P B instead of (A, ∅) ≡k
∞ω,P (B, ∅).

The k-pebble P game for (A, α) and (B, β) is played between Spoiler and Duplicator. We denote
the game by PGP

k (A,B, α, β), and we use the shorthand notation PGP
k (α, β) whenever A and B are

clear from the context.

Definition 6 The rules of the game PGP
k (A,B, α, β) are the following:

1. If α 7→ β is not a partial isomorphism, then the game ends, and Spoiler wins.

2. If (1) does not hold, there are two types of moves that Spoiler can choose to play:

• Left P-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple ~y ∈ Xr
k of

distinct variables. Duplicator chooses next a bijection f : A → B. Spoiler answers by
choosing an r-tuple ~b ∈ Br. Duplicator answers by choosing r-tuples ~a1, . . . ,~an such that
f−1(~b) = p̂A(~a1, . . . ,~an). Spoiler completes the round by choosing i ∈ [n]. The players

continue by playing PGP
k (α[~ai/~y], β[~b/~y]).

• Right P-quantifier move: Similar to the above except that Spoiler chooses a tuple in Ar

and Duplicator responds by a sequence of r-tuples from B.

3. Duplicator wins the game if Spoiler does not win it in a finite number of rounds.

Theorem 7 If Duplicator has a winning strategy in PGP
k (A,B, α, β), then (A, α) ≡k

∞ω,P (B, β).

Using a version of the Cai-Fürer-Immerman construction we prove that for all ` and k there are
non-isomorphic structures A and B such that Duplicator has a winning strategy in PGN`

k (A,B). On
the other hand, A and B can be separated by a polynomial time CSP. This shows that ≡k

∞ω,N`
does

not capture isomorphism for any k, and L∞∞ω(QN`
) does not capture all of PTIME.
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